3.1117 \(\int \frac {\sqrt {e x} (c+d x^2)}{(a+b x^2)^{7/4}} \, dx\)

Optimal. Leaf size=125 \[ -\frac {d \sqrt {e} \tan ^{-1}\left (\frac {\sqrt [4]{b} \sqrt {e x}}{\sqrt {e} \sqrt [4]{a+b x^2}}\right )}{b^{7/4}}+\frac {d \sqrt {e} \tanh ^{-1}\left (\frac {\sqrt [4]{b} \sqrt {e x}}{\sqrt {e} \sqrt [4]{a+b x^2}}\right )}{b^{7/4}}+\frac {2 (e x)^{3/2} (b c-a d)}{3 a b e \left (a+b x^2\right )^{3/4}} \]

[Out]

2/3*(-a*d+b*c)*(e*x)^(3/2)/a/b/e/(b*x^2+a)^(3/4)-d*arctan(b^(1/4)*(e*x)^(1/2)/(b*x^2+a)^(1/4)/e^(1/2))*e^(1/2)
/b^(7/4)+d*arctanh(b^(1/4)*(e*x)^(1/2)/(b*x^2+a)^(1/4)/e^(1/2))*e^(1/2)/b^(7/4)

________________________________________________________________________________________

Rubi [A]  time = 0.08, antiderivative size = 125, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 6, integrand size = 26, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.231, Rules used = {452, 329, 331, 298, 205, 208} \[ -\frac {d \sqrt {e} \tan ^{-1}\left (\frac {\sqrt [4]{b} \sqrt {e x}}{\sqrt {e} \sqrt [4]{a+b x^2}}\right )}{b^{7/4}}+\frac {d \sqrt {e} \tanh ^{-1}\left (\frac {\sqrt [4]{b} \sqrt {e x}}{\sqrt {e} \sqrt [4]{a+b x^2}}\right )}{b^{7/4}}+\frac {2 (e x)^{3/2} (b c-a d)}{3 a b e \left (a+b x^2\right )^{3/4}} \]

Antiderivative was successfully verified.

[In]

Int[(Sqrt[e*x]*(c + d*x^2))/(a + b*x^2)^(7/4),x]

[Out]

(2*(b*c - a*d)*(e*x)^(3/2))/(3*a*b*e*(a + b*x^2)^(3/4)) - (d*Sqrt[e]*ArcTan[(b^(1/4)*Sqrt[e*x])/(Sqrt[e]*(a +
b*x^2)^(1/4))])/b^(7/4) + (d*Sqrt[e]*ArcTanh[(b^(1/4)*Sqrt[e*x])/(Sqrt[e]*(a + b*x^2)^(1/4))])/b^(7/4)

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rule 298

Int[(x_)^2/((a_) + (b_.)*(x_)^4), x_Symbol] :> With[{r = Numerator[Rt[-(a/b), 2]], s = Denominator[Rt[-(a/b),
2]]}, Dist[s/(2*b), Int[1/(r + s*x^2), x], x] - Dist[s/(2*b), Int[1/(r - s*x^2), x], x]] /; FreeQ[{a, b}, x] &
&  !GtQ[a/b, 0]

Rule 329

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[k/c, Subst[I
nt[x^(k*(m + 1) - 1)*(a + (b*x^(k*n))/c^n)^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0]
 && FractionQ[m] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 331

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[a^(p + (m + 1)/n), Subst[Int[x^m/(1 - b*x^n)^(
p + (m + 1)/n + 1), x], x, x/(a + b*x^n)^(1/n)], x] /; FreeQ[{a, b}, x] && IGtQ[n, 0] && LtQ[-1, p, 0] && NeQ[
p, -2^(-1)] && IntegersQ[m, p + (m + 1)/n]

Rule 452

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Simp[((b*c - a*d)
*(e*x)^(m + 1)*(a + b*x^n)^(p + 1))/(a*b*e*(m + 1)), x] + Dist[d/b, Int[(e*x)^m*(a + b*x^n)^(p + 1), x], x] /;
 FreeQ[{a, b, c, d, e, m, n, p}, x] && NeQ[b*c - a*d, 0] && EqQ[m + n*(p + 1) + 1, 0] && NeQ[m, -1]

Rubi steps

\begin {align*} \int \frac {\sqrt {e x} \left (c+d x^2\right )}{\left (a+b x^2\right )^{7/4}} \, dx &=\frac {2 (b c-a d) (e x)^{3/2}}{3 a b e \left (a+b x^2\right )^{3/4}}+\frac {d \int \frac {\sqrt {e x}}{\left (a+b x^2\right )^{3/4}} \, dx}{b}\\ &=\frac {2 (b c-a d) (e x)^{3/2}}{3 a b e \left (a+b x^2\right )^{3/4}}+\frac {(2 d) \operatorname {Subst}\left (\int \frac {x^2}{\left (a+\frac {b x^4}{e^2}\right )^{3/4}} \, dx,x,\sqrt {e x}\right )}{b e}\\ &=\frac {2 (b c-a d) (e x)^{3/2}}{3 a b e \left (a+b x^2\right )^{3/4}}+\frac {(2 d) \operatorname {Subst}\left (\int \frac {x^2}{1-\frac {b x^4}{e^2}} \, dx,x,\frac {\sqrt {e x}}{\sqrt [4]{a+b x^2}}\right )}{b e}\\ &=\frac {2 (b c-a d) (e x)^{3/2}}{3 a b e \left (a+b x^2\right )^{3/4}}+\frac {(d e) \operatorname {Subst}\left (\int \frac {1}{e-\sqrt {b} x^2} \, dx,x,\frac {\sqrt {e x}}{\sqrt [4]{a+b x^2}}\right )}{b^{3/2}}-\frac {(d e) \operatorname {Subst}\left (\int \frac {1}{e+\sqrt {b} x^2} \, dx,x,\frac {\sqrt {e x}}{\sqrt [4]{a+b x^2}}\right )}{b^{3/2}}\\ &=\frac {2 (b c-a d) (e x)^{3/2}}{3 a b e \left (a+b x^2\right )^{3/4}}-\frac {d \sqrt {e} \tan ^{-1}\left (\frac {\sqrt [4]{b} \sqrt {e x}}{\sqrt {e} \sqrt [4]{a+b x^2}}\right )}{b^{7/4}}+\frac {d \sqrt {e} \tanh ^{-1}\left (\frac {\sqrt [4]{b} \sqrt {e x}}{\sqrt {e} \sqrt [4]{a+b x^2}}\right )}{b^{7/4}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 0.06, size = 69, normalized size = 0.55 \[ \frac {2 \sqrt {e x} \left (3 d x^3 \left (\frac {b x^2}{a}+1\right )^{3/4} \, _2F_1\left (\frac {7}{4},\frac {7}{4};\frac {11}{4};-\frac {b x^2}{a}\right )+7 c x\right )}{21 a \left (a+b x^2\right )^{3/4}} \]

Antiderivative was successfully verified.

[In]

Integrate[(Sqrt[e*x]*(c + d*x^2))/(a + b*x^2)^(7/4),x]

[Out]

(2*Sqrt[e*x]*(7*c*x + 3*d*x^3*(1 + (b*x^2)/a)^(3/4)*Hypergeometric2F1[7/4, 7/4, 11/4, -((b*x^2)/a)]))/(21*a*(a
 + b*x^2)^(3/4))

________________________________________________________________________________________

fricas [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x)^(1/2)*(d*x^2+c)/(b*x^2+a)^(7/4),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (d x^{2} + c\right )} \sqrt {e x}}{{\left (b x^{2} + a\right )}^{\frac {7}{4}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x)^(1/2)*(d*x^2+c)/(b*x^2+a)^(7/4),x, algorithm="giac")

[Out]

integrate((d*x^2 + c)*sqrt(e*x)/(b*x^2 + a)^(7/4), x)

________________________________________________________________________________________

maple [F]  time = 0.05, size = 0, normalized size = 0.00 \[ \int \frac {\sqrt {e x}\, \left (d \,x^{2}+c \right )}{\left (b \,x^{2}+a \right )^{\frac {7}{4}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*x)^(1/2)*(d*x^2+c)/(b*x^2+a)^(7/4),x)

[Out]

int((e*x)^(1/2)*(d*x^2+c)/(b*x^2+a)^(7/4),x)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (d x^{2} + c\right )} \sqrt {e x}}{{\left (b x^{2} + a\right )}^{\frac {7}{4}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x)^(1/2)*(d*x^2+c)/(b*x^2+a)^(7/4),x, algorithm="maxima")

[Out]

integrate((d*x^2 + c)*sqrt(e*x)/(b*x^2 + a)^(7/4), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {\sqrt {e\,x}\,\left (d\,x^2+c\right )}{{\left (b\,x^2+a\right )}^{7/4}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((e*x)^(1/2)*(c + d*x^2))/(a + b*x^2)^(7/4),x)

[Out]

int(((e*x)^(1/2)*(c + d*x^2))/(a + b*x^2)^(7/4), x)

________________________________________________________________________________________

sympy [C]  time = 21.77, size = 87, normalized size = 0.70 \[ \frac {c \sqrt {e} x^{\frac {3}{2}} \Gamma \left (\frac {3}{4}\right )}{2 a^{\frac {7}{4}} \left (1 + \frac {b x^{2}}{a}\right )^{\frac {3}{4}} \Gamma \left (\frac {7}{4}\right )} + \frac {d \sqrt {e} x^{\frac {7}{2}} \Gamma \left (\frac {7}{4}\right ) {{}_{2}F_{1}\left (\begin {matrix} \frac {7}{4}, \frac {7}{4} \\ \frac {11}{4} \end {matrix}\middle | {\frac {b x^{2} e^{i \pi }}{a}} \right )}}{2 a^{\frac {7}{4}} \Gamma \left (\frac {11}{4}\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x)**(1/2)*(d*x**2+c)/(b*x**2+a)**(7/4),x)

[Out]

c*sqrt(e)*x**(3/2)*gamma(3/4)/(2*a**(7/4)*(1 + b*x**2/a)**(3/4)*gamma(7/4)) + d*sqrt(e)*x**(7/2)*gamma(7/4)*hy
per((7/4, 7/4), (11/4,), b*x**2*exp_polar(I*pi)/a)/(2*a**(7/4)*gamma(11/4))

________________________________________________________________________________________